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Abstract-In the glass and polymer industries, tibres are manufactured by extruding hot material through 
a circular orifice to form a continuous filament. This paper is concerned with predicting the temperature 
of the tibre as a function of distance from the orifice. 

A simple model is examined wherein the tibre is regarded as a continuous infinite circular cylinder 
issuing into a fluid of infinite extent. The boundary layer equations. in conjunction with an equation 
governing the rate of supply of heat to the fluid from the I‘lbre. are solved using the von Kkrman-Pohlhausen 
method. 

An important difficulty in this problem is that the fluid properties vary greatly over the region of 
interest, due to the large temperature gradients which occur in practice. To circumvent this, a method of 

averaging is devised and this leads to fairly close agreement with experimental results. 
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radius of tibre : 
Xf, 
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(B.1); 
Y, 

specific heat of fibre ; 
specific heat of fluid ; Greek symbols 
integral defined by equation % 
(28) ; 
thermal conductivity ; 
coefficients in temperature pro- 
tile(A.l): 

B. 

rate of heat transfer per unit 
length of fibre ; 
distance from the axis of the 
fibre ; 
temperature of fluid ; 
temperature of fibre : 
ambient temperature of fluid ; 
temperature of the fibre at the 
orifice ; 
first, second, . . . approximations P, / 
to T,; Ps 
speed of the fibre ; c, 
axial and radial fluid velocity 8, 
components ; e .% 
axial coordinate : V, I 
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parameter in boundary layer 
velocity protile,equation (10) : 

parameter in boundary layer 
temperature profile, equation 
(16) : 
Euler’s constant ; 
momentum boundary layer 
thickness ; 
thermal boundary layer thick- 
ness ; 
thermal diffusivity ; 
ratio of specific heats, per unit 
volume, of the fluid and the 
libre ; 
density of the fluid ; 
density of the tibre ; 
Prandtl number [V/K] ; 
T- T,; 

Ts - Tm; 
kinematic viscosity. 

axial distance at which the fibre 
temperature is Tf ; 
distance from the surface of the 
fibre. 
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1. INTRODUCTION 

IN THE process of manufacturing glass or 
polymer libres, filaments of hot materials are 
drawn through orifices and cool as they pass 
through the surrounding environment. In a 
recent paper, Bourne and Elliston [l] analysed 
a simple model of this process wherein a libre 
is treated as a continuous infinite circular 
cylinder issuing from a circular orifice and 
penetrating a fluid of infinite extent, The object 
of their paper was to provide a method for 
calculating the average rate of heat transfer from 
a given length of fibre, and this was accom- 
plished on the basis of the assumption that the 
non-uniform libre temperatures experienced in 
practice may be replaced by uniform average 
values. Effectively, this procedure supposes that 
the heat capacity of the fibre is infinite and 
naturally gives no direct information about 
how the libre temperature varies with distance 
from the orifice. 

is that of Erickson et al. [3]. They considered 
a hot flat sheet issuing from a slot into a fluid 
and calculated the rate of heat transfer and its 
surface temperature. This is the two-dimensional 
counterpart of the problem under consideration 
here. Fundamental to the papers [l-6] on heat 
transfer are those of Sakiadis [7-91 in which the 
momentum boundary layer equations for flows 
over flat and cylindrical surfaces are set up and 
solved. Once again we shall have recourse to 
Sakiadis’s work. 

Some experimental data on the temperature 
distribution along a drawn fibre has been pro- 
vided by Alderson et al. [lo] and by Arridge 
and Prior [ll]. It will be shown that the pro- 
posed theoretical model gives results in fairly 
close agreement with those obtained experi- 
mentally. 

2. THE BASIC EQUATIONS 

The purpose of the present contribution is to 
show how allowance may be made for the finite 
heat capacity of the libre. Attention will be 
given mainly to calculating the libre tempera- 
ture as a function of distance from the orifice, 
but the local heat transfer coefficient can also 
be calculated quite easily. The problem is 
approached through the laminar boundary 
layer equations, and an approximate solution is 
obtained by means of the von Karman-Pohl- 
hausen integral technique. 

The physical model is that of an endless 
circular fibre issuing steadily, with speed U, 
from an orifice into a semi-infinite fluid medium 
(Fig. 1). At large distances from the fibre, the 
fluid is at rest and at a uniform temperature T,. 

A major source of difficulty is that the tem- 
perature range in the actual manufacturing 
process is so wide that some of the fluid proper- 
ties are far from uniform. In the model proposed 
here, these non-uniform values are replaced 
throughout by uniform average values, but close 
attention is then given to devising a satisfactory 
method whereby the average values may be 
chosen. 

Several papers [lM] have appeared recently 
on heat transfer in boundary layers on con- 
tinuous moving surfaces. The only one of these 
which deals directly with finite heat capacity 
effects and a fluid of arbitrary Prandtl number 

FIG. 1. Endless circular fibre drawn steadily downwards 
through a circular orifice. 

We take coordinates x and r which measure 
distance along the axis of the fibre from the 
orifice and distance from the axis, respectively ; 
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the corresponding fluid velocity components 
are u and o, and the fluid temperature is denoted 
byT. 

On the basis of the boundary layer approxi- 
mations, which Bourne and Elliston El] showed 
are applicable in the present circumstances, the 
equations of motion and the energy equation 
reduce to 

dT a~ K a a~ ~--+y--=-- T- ; 

i?x ar ( ) r ar ar 
v, K are, respectively, the kinematic viscosity 
and thermal diffusivity of the fluid. In the 
derivation of these equations, spatial variations 
of the fluid properties have been neglected ; we 
shall discuss this approximation later. The 
boundary conditions are : 

u=u, v=o, T= T&x)atr = a, (4) 

I.4 -0, u-+0, T+T, asr+co, ($1 

where a is the radius of the fibre and T&z) is its 
surface temperature. 

In the problem of Bourne and Elliston [113 
T, was assumed given and independent of x: 
the object here is to determine TAX), and one 
further governing equation is therefore required. 
The additional equation arises from the fact 
that the fibre has a finite heat capacity and is 
steadily losing its heat to the surrounding fluid. 

Consider the elementary cylindrical region 
r ,< a, X < ?c d X + 6X. In a short time inter- 
val at, the heat received by the fluid from the 
fibre passing through this region is, to first 
order, 

- 27Uzk(a27ay), = ,6X&, (6) 

where y = r --a denotes distance from the 
surface of the fibre and k is the thermal con- 
ductivity of the fluid. The corresponding net 

loss of heat from the element by convection 
across its two bounding cross-sections is 

- Una’ PaC,dT,idx 6X&t. e> 

where ps and C,, respectively, denote the density 
and specific heat of the libre. Here we have 
assumed that T, does not vary over the libre 
cross-section : justification for this may be found 
in Glicksman [5]. It may also be shown that, 
under typical operating conditions, heat transfer 
in the axial direction by conduction along the 
libre is very small compared with that due to 
convection and may be neglected. It thus 
follows from(6) and (7) that 

k(dT,‘$~& 0 = &zp,C&T,idx, (81 

and this is the final governing equation. We note 
that equation (8) requires modification by the 
inclusion of a heat source term if the material 
of the fibre undergoes a phase transition in the 
forming process. In the case of glass (with which 
we are mainly concerned), the material is in the 
liquid state throughout, but the behaviour of 
some polymers is more complicated and partial 
or total crystallisation may occur (Bawn [12]). 

Because of the additional equation, another 
boundary condition is now required, and this 
is provided by assuming that the fibre tempera- 
ture at the orifice (T,) is known, giving 

T$(O) = T,. (9) 

Using the von K~~~n-Pohihausen method, 
an approximate solution of equations (1) and (2) 
has already been given by Sakiadis [9] and has 
been put into a convenient form by Bourne and 
Elliston [I]. The velocity proflle may be 
expressed as 

U 
-_= 

u 
1 --Log, li-: 

a(x) ! > 
for y < S(x) (10) 

and 

U 
- = 0 for y>,&) 
u 

(11) 
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where 

6(x) = u(ea - 1) (12) 

is the boundary layer thickness; the parameter 
a(x) satisfies the implicit equation 

2vx e2’ - 1 
- - ~ - Ei(2a) + log,(2ol) 
Ua2 - a 

+i’-2. (13) 

where y = 0.5772.. . is Euler’s constant. 
In the next section we show that the tem- 

perature 7”~) of the libre may also be deter- 
mined by the von Karman-Pohlhausen method. 

3. ANtiYSIS TO OBTAIN THE FIBRE 
TEMPERATURE PROFILE 

Define 

and 
0(x, Y) = W. Y) - Tw (14) 

f&(x) = T&x) - T,. (15) 

We assume that the fluid temperature distribu- 
tion may be expressed in the form 

e -_= 
0s l 

and 

where 

this may be derived from the boundary layer 
energy equation (3) by direct integration, use 
being made also of the integral of the continuity 
equation (1) to eliminate u. 

At this stage it is convenient to restrict 
attention to cases where the thermal boundary 
layer contains the entire momentum boundary 
layer, so that 6 6 6,. This implies that the 
Prandtl number 0 < 1; however, the case when 
(T > 1 differs from this only in subsequent 
details rather than in any fundamental way. 

By substituting the velocity profile, (10) and 
(1 l), and the temperature profile, (16) and (17) 
into the integral equation (19) we obtain 

1) 11 
The energy balance equation (8) may also be 
expressed in terms of (3&c) and b(x) by substitut- 
ing equations (14)-(16). Defining 

(16) 
which is the ratio of the specific heats per unit 
volume of the fluid and the ftbre, respectively, 
we find that 

f3 
- = 0 for y 2 6,(x), 
0s 

(17) 

&(x) = a(ep - 1) 

Now, differentiation of (13) yields 

(22) 

(18) 2 = [(IX - 1) e2a + CI + 11 g, (23) 

is the thickness of the thermal boundary layer. 
Justification for this choice of distribution, and this may be used to eliminate the variable x 

which reduces to that assumed by Bourne and in equations (20) and (22) in favour of ~1. Per- 

Elliston [l] in the case when 8, is independent forming the differentiation in (20) and using 

of x, is given in the Appendix A. (22) to eliminate t&, we thus obtain after some 

To determine TJx) and the parameter /3(x), simplification 
we use the energy integral equation, viz. (a - /?)(ae” - sinh CC) 

00 
dp=B2_1+ 

-$ 
s 
(a + y)r.&dy = - Ica g _ ; 

0 

[ da cio a cash a - sinh a 1 
(19) 

?’ -0 
0 

+ z[(l + j?)sinh a - a cash a - ape-“]. 
(24) 
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At x = 0, 6 = 8= = 0, and hence by equations 
(12) and (18), the end condition required for the 
integration of (24) is 

fl = 0 when a = 0. (25) 

When fi is known as a function .of a, the 
dependence of 8, on a can be determined by 
integration of equations (22) and (23) which 
gives 

U4 
loge t&(O) 

n 

= - x +[(a - l)e’” + a + l]da. 
s 

(26) 

0 

Inverting this expression, and restoring the 
original variables by means of equations (9). 
(14) and (15) the temperature T,(sJ, along the 
libre is given by 

T,(x) = T, + (T, - T,) exp ( +i4, (27) 

where 

I= s &[(a - l)e2” + a + l]da. (28) 

0 

Values of x corresponding to particular values 
of a may be calculated by means of equation 

(13). 
As a footnote to this section it is worth 

mentioning that when /s’(x) and TAX) have been 
calculated, the local rate of heat transfer, Q(x), 
per unit length of cylinder may also be deduced 
easily. It is readily verified that 

Q(x) = 2~W&4 - L]/&). (29) 

4. DISCUSSION OF RESULTS 

We note first that a little care must be taken 
in evaluating the integral Z defined by equation 
(28) because the integrand is of an indeterminate 
form at the point a = 0, /? = 0. Furthermore, 
the right-hand side of the differential equation 
(24) is also singular at this point. Details of the 

computional method used are presented in the 
Appendix B. 

Before calculating the results, it was necessary 
to assign suitable values to the Prandtl number 
C, the kinematic viscosity v and the parameter 
YZ [defined by equation (21)]. In the analysis 
to obtain the temperature distribution, given 
in the preceding section, these parameters were 
regarded as constants, but each of them is, of 
course, temperature dependent. It was hoped 
that at this stage mean values could be chosen 
in a consistent way which would lead to satis- 
factory agreement with the experimental results 
of Alderson et al. [lo] and Arridge and Prior 
[ll]. Experience showed that the final results 
were relatively insensitive to changes in (T, and 
as this parameter varies only slowly with tem- 
perature it was taken to have the value corres- 
ponding to the mid-point of whatever range of 
fibre temperatures was under consideration. The 
results were considerably influenced by varia- 
tions in v and YZ, and several ways of assigning 
suitable mean values were tried. The most 
successful procedure was the following. 

Suppose that at the orifice the temperature of 
the libre is To and that it is required to determine 
the distance xf at which the temperature is Tf. 
The mean values of v and q with respect to 
temperature over the range (To, Tf) were 
calculated, using Tables of physical constants. 
These mean values were then used to obtain 
an estimate of xs. By repeating the procedure 
for various values of T,. a first approximation, 
Ty’(.x), to the surface temperature distribution 
T,(x) was obtained. 

To obtain a better approximation. the dis- 
tribution Tk’)(x) was used to calculate values of 
v and q along the surface of the tibre, and this 
enabled mean values of v and q with respect to 
distance x to be found. These mean values were 
then used to obtain a second approximation, 
Tp’(x), to TAX). This sequence ofapproximations 
was continued, utilising at each stage the latest 
approximation to TAX) to obtain approxima- 
tions to the mean values with respect to x of 
v and r~, until no further noticeable change 
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occurred. In practice, convergence was quite 
rapid and, with the exception of one case when 
a further iteration was required, it was found 
unnecessary to go beyond the third approxima- 
tion. 

The motivation for the above procedure is 
that the surface temperature distribution is 
likely to be strongly influenced by the average 
fluid properties near to the surface, since it is 
in this region that most of the heat transfer 
takes place. Average values with respect to 
distance along the surface, are, of course, 
likely to be more appropriate than average 
values with respect to the temperature range 
under consideration, and hence the latter were 
used only to initiate the approximations to 
T,(x). Ideally, some account should also be 
taken of spatial variations across the boundary 
layer, but investigation showed that very strong 
weighting towards surface values was necessary 
to bring the theoretical results close to the 
experimental ones. In view of the fact that any 
averaging procedure at this stage can be, at best. 
only an approximation there seems little justili- 
cation for a more elaborate procedure than that 
described. It must also be borne in mind that 
there is an inherent error in the Pohlhausen 
method, since the assumed velocity and tem- 
perature profiles are not exact solutions of the 
basic differential equations, and this may well 
be at least as significant as that incurred in 
the process of averaging. 

It is worth mentioning that, as an alternative 
to obtaining the mean values of v and q with 
respect to x, the simpler procedure of using the 
values corresponding to the temperature at the 
point $xxf was also tried. However, although 
this method sometimes led to satisfactory 
agreement with experimental results, it was 
found overall to be less reliable. 

Alderson et al. [lo] performed experiments 
on glass fibres and found that, within a 
quite substantial distance from the orifice, 

log [ W) - Tml d ecreases almost linearly with 
x. Figures 2-4 show the straight lines which 
they fitted to their data on three fibres of differ- 

ent radii drawn at different speeds. In each case, 
the orifice temperature (T,) was about 1100°C 
and measurements were made up to the point 
at which the temperature had fallen to about 
100°C. Using the method developed in this 
paper, theoretical calculations were made to 
determine the values of x corresponding to 
libre temperatures of 100, 200, 300, 400 and 
500°C respectively. The points obtained are 
shown in the diagrams ; Figs. 2 and 3 show only 

FIG. 2. Comparison between theoretical values and experi- 
mental line of Alderson et rrl. [IO] 

FIG. 3. Comparison between theoretical values and 
experimental line of Alderson et (11. [lo]. 
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FIG. 4. Comparison between theoretical values (first, second 
and third approximations) and experimental line of 

Alderson et&, [JO]. 

x, cm 

FIG. 5. Comparison between theoreticat values and 
experiment& curve of Arridge and Prior f Ii]. 

the results of the final approximations to 
Ts(x), but Fig. 4 shows the first, second and 
third (final) approximation in order to give 
some indication of the extent of the differences 
between them in a typical case. It should be 
noted that sufficient tabulated data of some of 
the physical parameters involved could not be 
found and graphical interpolation was used 

where necessary. Due to errors incurred in this 
process, it was anticipated that some noticeable 
inaccuracies might be introduced into the 
calculations, and consequently the slight irregu- 
larity of the theoretical points which is evident 
in Figs. 2-4 was not unexpected. It is observed, 
however, that the calculated values lie reason- 
ably close to the experimental lines. The most 
pronounced deviations occur in the second 
case (Fig. 3) where temperatures in the inter- 
mediate range of values of x are underestimated. 

Arridge and Prior [ 1 l] also performed experi- 
ments on the cooling of silica fibres. They 
measured fibre temperatures over relatively 
longer ranges of x than did Alderson et al [lO], 
and obtained results in the region well beyond 
the range of validity of the approximately linear 
relationship between log [T&C) - T,] and x. 
In one case, they gave details of the measured 
temperature dist~bution, from an orifice value 
of 1750°C to a final value of about 55°C. Their 
experimental curve is shown in Fig. 5, together 
with some points predicted by the theory of this 
paper. As found in comparing with one of the 
experiments of Alderson et al. [lO], there is a 
marked tendency to underestimate temperatures 
at intermediate values of x. 

The discrepancies between the theoretical and 
experimental values are probably due largely to 
using average values of the fluid properties, 
some of which vary by as much as a factor of 
ten in the temperature ranges considered. As 
mentioned earlier, there may also be a sig- 
nificant contribution from the von KgrmQn- 
Pohlhausen approximation. 

There are also obvious limitations to the 
model near the orifice which should be borne 
in mind, In the paper of Bourne and Elliston 
[l], no account was taken of variation in the 
tibre radius, which is quite marked near the 
orifice, and the same approximation has been 
adopted here. Furthermore, Griffin and Throne 
[ 13) found in experiments on a flat sheet issuing 
from a slot in a wall that the presence of the 
wall leads to a reduction in the heat transfer 
coefficient near the slot. A similar effect can be 

D 



1330 D. E. BOURNE and H. DIXON 

anticipated in the vicinity of the origin of a 
drawn fibre. On the other hand, Glicksman 
[14] has shown that near the orifice, radiation 
significantly enhances the heat transfer process. 
Using the appropriate formula in [14], it may 
be shown that this effect is of about the same 
order of magnitude as the reduction found by 
Griflin and Throne [13]. The net contribution 
to the error from these sources is thus probably 
quite small, particularly as the region where 
they are significant is only a small fraction of the 
total length offibre considered. 
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APPENDIX A 
The purpose of this Appendix is to explain why the 

assumed temperature profile, defined by equations (16)-( 18), 
is likely to serve adequately in calculating the surface 
temperature by the von KgrmBn-Pohlhausen method. 

Consider a profile of the form 

and 

for y < 6,(x) (A.1) 

Q 
- = 0 for y > 6,(x). 
0s 

(A.2) 

where p, 4 are constants and a is a function of x only. This 

satisfies the temperature boundary conditions (4) and (5). 

For good accuracy in calculating surface properties. it is 
also desirable that the chosen profile should adequately 
represent conditions near the surface. This may be achieved 
by choosing p and y so that, at y = 0, the thermal boundary 

layer equation (3) and its derivative with respect to y are 

satisfied. 

Substituting (A. I) into the temperature equation (3) and 
using the definitions (14) and (15), we find that for the 
equation to be satisfied at y = 0. 

(A.3) 

Eliminating t& by means of equation (22), it thus follows that 

p=q-+. (A.4) 

However, in practice, q = O(10e3) and hence to a very good 

approximation we may take p = - +. 

Using the continuity equation (1) and the velocity 

boundary conditions (4) and (5). the derivative at y = 0 of 
the temnerature eauation (3)reduces to 

(A.5) 

Substituting the velocity profile (10) and the assumed 

temperature profile (A. l), and using equation (22) to eliminate 

0,. we find that 

(‘4.6) 
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Now, except within a distance of the order of 1 mm from 
the orifice (x = 0), the terms in a and j on the right-hand 
side of (A.6) are found to be very small indeed and hence 
we may take q = + with negligible error. Thus for y <a&), 
we now have 

(A.7) 

to a good approximation. This profile is the same as the 
first four terms of the expansion in ascending powers of y 
of the logarithmic expression (16) and it follows that (16) 
is likely to have a good accuracy near the surface of the 
fibre(y = 0). 

Finally, it should be noted that an important additional 
feature of the logarithmic form, which makes it preferable to 
a simple polynominal expression, is that it asymptotically 
correct when x + co. For. in the limit when x --t co, the 
convection terms on the left-hand side of equation (3) vanish, 
and it is readily verified that the profile (16) satisfies the 
reduced equation identically. 

APPENDIX B 

At the point a = 0, p = 0, the right-hand side of equation 
(24) is of an indeterminate form. To obtain fi in this neigh- 
bourhood an expansion ofthe form 

fi = a,a + aza’ + u3a3 + (B.1) 

may be used. Substituting this into the differential equation 

(24) and comparing coefficients of a, a2 and a3 in the expan- 
sion of each side, we find that 

a, = f (u + 2)/u, (B.2) 

a, = [(u - l)(cr + 2) + 6r$9a((r + l), (B.3) 

as = [(u - l)(o + 2)(3a2 - 4u - 2) + 60(3u2 + u + 2)~ 

+ 360$]/27O(u + 1)‘(3u + 2). (B.4) 

To evaluate the integral I defined by equation (28) the 
series expansion (B.l) was substituted first, which on 
expanding in ascending powers of a gives 

This expression was used to evaluate I in the range 
0 < a < 008 ; outside this range, values of the integral were 
calculated by means of the trapezoidal rule. 

The series expansion (B.l) was used to evaluate b in the 
range 0 < a $ 008. Using the Hamming method, forward 
integration of the differential equation (24) was then carried 
out, in steps of @02, to determine p up to the point where 
a = 7.5 (which is likely to be quite sufficient for most 
practical purposes). 

Finally, values of x corresponding to particular values of 
a were found from equation (13) and hence the temperature 
distribution TAX) was obtained. 

The whole procedure was programmed and carried out by 
an I.C.T. 1907 computer. 

LE REFROIDISSEMENT DE FIBRES DANS LE PROCESSUS DE FORMATION 

R&um~Dans les industries du verre et des polymtres, des hbres sont fabriquees par extrusion du mattriau 
chaud dans un orifice circulaire pour former un filament continu. Cet article concerne la d&termination de 
la temperature de la tibre comme Ctant une fonction de la distance a l’orifice. On examine un simple exemple 
dans lequel la fibre est prise pour un cylindre continu circulaire intini sortant dans un fluide d’etendue 
infinie. Les equations de la couche limite en relation avec une equation controlant le taux de cession de 
chaleur de la fibre au fluide sont resolues par la mtthode de K&-man-Pohlhausen. 

Une difliculte importance dans ce probleme est que les proprietts du tluide varient bien au-de18 des 
hypotheses ceci a cause des grands gradients de temperature qui existent dans la pratique. Pour tirer compte 
de ceci une methode de moyenne est developpee qui conduit a un accord favorable avec les resultats 

exptrimentaux. 

DIE ABKUHLUNG VON FASERN BEIM HERSTELLUNGSPROZESS 

Zusammenfassung-In der Glas- und Kunststoffindustrie werden Fasem durch Herauspressen heissen 
Materials aus kreisformigen Diisen erzeugt in Form eines endlosen Fadens. Hier sol1 die Fadentemperatur 
als Funktion vom Abstand von der Diise bestimmt werden. 

Im Model1 wird der Faden als endloser Kreiszylinder angesehen, der kontinuierlich in ein unendhch 
grosses Bad taucht. Nach der K&man-Pohlhausen-Methode sind die Grenzschichtgleichungen zusammen 
mit einer Gleichung fiir den Warmetransport vom Faden an die Fliissigkeit gel&t. 

Eine beachtenswerte Schwierigkeit liegt hier darin, dass sich die Fhissigkeitseigenschaften im inter- 
essierenden Bereich stark Lndern, wegen der praktisch vorkommenden grossen Temperaturgradienten. 
Urn diese Schwierigkeit zu umgehen, wird eine Methode zur Mittelwertbi!dung vorgeschlagen, die ziemlich 

gute Ubereinstimmuny mit Versuchswerten liefert. 
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&f~OTIl~U&---B II~'O""BO~CTBefIHblX yCJIOBMRX HeIIpepbIBHbIe BOJfOHHil CTeHJla L1 flOJIMMepOB 

nonyvawr nyTeM npo~annmami~~ Harpefroro Ma-repxana qepea qyrnbIe OT~~~~TRFI. R 
RaHHOfi p36OTe IfpMBe,l$H pa&T TeMIlepaTypLI BOJIOKIf3 KaK @yHtiI&HM PXCTORHGiFt OT 

OTBepCTHff. ~pffH~Ta ffpOCT%f pWf~TUaFf WOROJfb, 110 fWTOpOri ~O~~~ffO PaCC~aT~f~BaeTC~f 

KafE cnnourffoB HefIpep~BH~~ GecfEotiewmii iFpymbIti ~fmmf~p, ~orp~~a~q~~c~ R C,earpa- 

HIPfHyJO IKM~KOCTb. YpaBHeHMN IfOrpaIiWiIiO~O CJIOfl PeIIIaIoTCff MeTOROM KapMaIra- 

Ilonbrayseaa coBhfeCTfI0 c ypaBffemeM TemoBoro BaJfaffca, 0npe~eJImo~m AHT~F~CRBHOCT~ 

TefIJfOOTjJaW OT BOJIOKtIa B HE&ffiKOCTb. Hado,bfffaff TE)Y&HOCTb B peLfIeHR&f DTOtl 3a~iI’lM 

COCTOlfT B HeO~xO~~IMOCTff yq6Ta C~~bHO~ IIe~eMeffHOCT~ CBOftCTB ~~~f~OCT~ BO f3Cefi MCCJfe/l- 

yearof? 06nacTR 1103 BoafieZicTmeid Bonbufttx TeMnepaTypabfx rpaafieaToB, mefowsfx MecTo 

B peanbwoiv npoqecce. B pai5oTe npeqnaraeTcn MeTo;( ocpeqaewm, oriecnewmarow4~ 

flOBOJfbH0 XOpOIUee COrJIaCOBaffMe pa&T3 C 3KCIfepMMeHTaJfbHbfMM pe3yJIbTaTaMl4. 


