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Abstract—In the glass and polymer industries, fibres are manufactured by extruding hot material through
a circular orifice to form a continuous filament. This paper is concerned with predicting the temperature
of the fibre as a function of distance from the orifice.

A simple model is examined wherein the fibre is regarded as a continuous infinite circular cylinder
issuing into a fluid of infinite extent. The boundary layer equations. in conjunction with an equation
governing the rate of supply of heat to the fluid from the tibre. are solved using the von Karman-Pohlhausen

method.

An important difficulty in this problem is that the fluid properties vary greatly over the region of
interest, due to the large temperature gradients which occur in practice. To circumvent this, a method of
averaging is devised and this leads to fairly close agreement with experimental results.
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NOMENCLATURE

radius of fibre :

coefficients in series expansion
(B.1);

specific heat of fibre ;
specificheat of fluid ;

integral defined by equation
(28);

thermal conductivity ;
coefficients in temperature pro-
file(A.1):

rate of heat transfer per unit
length of fibre ;

distance from the axis of the
fibre;

temperature of fluid ;
temperature of fibre :

ambient temperature of fluid;
temperature of the fibre at the
orifice ;

first,second, . . . approximations
toTs;

speed of the fibre ;

axial and radial fluid velocity
components;

axial coordinate:

1

XI,

y’

Greek symbols
a7

0,

323

axial distance at which the fibre
temperatureis T} ;

distance from the surface of the
fibre.

parameter in boundary layer
velocity profile,equation (10);
parameter in boundary layer
temperature profile, equation
(16):

Euler’s constant ;
momentum boundary
thickness;

thermal boundary layer thick-
ness;

thermal diffusivity ;

ratio of specific heats, per unit
volume, of the fluid and the
fibre;

density of the fluid ;

density of the fibre ;

Prandtl number [v/x];

T—-T,;

TS - Toos

kinematic viscosity.

layer
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1. INTRODUCTION

IN THE process of manufacturing glass or
polymer fibres, filaments of hot materials are
drawn through orifices and cool as they pass
through the surrounding environment. In a
recent paper, Bourne and Elliston [1] analysed
a simple model of this process wherein a fibre
is treated as a continuous infinite circular
cylinder issuing from a circular orifice and
penetrating a fluid of infinite extent. The object
of their paper was to provide a method for
calculating the average rate of heat transfer from
a given length of fibre, and this was accom-
plished on the basis of the assumption that the
non-uniform fibre temperatures experienced in
practice may be replaced by uniform average
values. Effectively, this procedure supposes that
the heat capacity of the fibre is infinite and
naturally gives no direct information about
how the fibre temperature varies with distance
from the orifice.

The purpose of the present contribution is to
show how allowance may be made for the finite
heat capacity of the fibre. Attention will be
given mainly to calculating the fibre tempera-
ture as a function of distance from the orifice,
but the local heat transfer coefficient can also
be calculated quite easily. The problem is
approached through the laminar boundary
layer equations, and an approximate solution is
obtained by means of the von Karman-Pohl-
hausen integral technique.

A major source of difficulty is that the tem-
perature range in the actual manufacturing
process is so wide that some of the fluid proper-
ties are far from uniform. In the model proposed
here, these non-uniform values are replaced
throughout by uniform average values, but close
attention is then given to devising a satisfactory
method whereby the average values may be
chosen.

Several papers [1-6] have appeared recently
on heat transfer in boundary layers on con-
tinuous moving surfaces. The only one of these
which deals directly with finite heat capacity
effects and a fluid of arbitrary Prandtl number
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is that of Erickson et al. [3]. They considered
a hot flat sheet issuing from a slot into a fluid
and calculated the rate of heat transfer and its
surface temperature. This is the two-dimensional
counterpart of the problem under consideration
here. Fundamental to the papers [1-6] on heat
transfer are those of Sakiadis [7-9] in which the
momentum boundary layer equations for flows
over flat and cylindrical surfaces are set up and
solved. Once again we shall have recourse to
Sakiadis’s work.

Some experimental data on the temperature
distribution along a drawn fibre has been pro-
vided by Alderson et al. [10] and by Arridge
and Prior [11]. It will be shown that the pro-
posed theoretical model gives results in fairly
close agreement with those obtained experi-
mentally.

2. THE BASIC EQUATIONS
The physical model is that of an endless
circular fibre issuing steadily, with speed U,
from an orifice into a semi-infinite fluid medium
(Fig. 1). At large distances from the fibre, the
fluid is at rest and at a uniform temperature T,

7

Fibre

x

Fic. 1. Endless circular fibre drawn steadily downwards
through a circular orifice.

We take coordinates x and r which measure
distance along the axis of the fibre from the
orifice and distance from the axis, respectively ;
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the corresponding fluid velocity components
are u and v, and the fluid temperature is denoted
by T

On the basis of the boundary layer approxi-
mations, which Bourne and Elliston [1] showed
are applicable in the present circumstances, the
equations of motion and the energy equation
reduce to

du 0
?'“é;+5r‘(?v)=0, (H
du ou vo [ ou
YT Ve v ("5)’ @)
or  oT_¥8 (ﬁf) 3)
z£6‘x+yéir' rér\ or/)

v, K are, respectively, the kinematic viscosity
and thermal diffusivity of the fluid. In the
derivation of these equations, spatial variations
of the fluid properties have been neglected ; we
shall discuss this approximation later. The
boundary conditionsare :

u=U, v=0 T=Tdx)atr =a, 4)

#u—0, v-0 T->T, asr— o, 5

where a is the radius of the fibre and Tyx) is its
surface temperature.

In the problem of Bourne and Elliston [1],
Ts was assumed given and independent of x:
the object here is to determine Tx), and one
further governing equation is therefore required.
The additional equation arises from the fact
that the fibre has a finite heat capacity and is
steadily losing its heat to the surrounding fluid.

Consider the elementary cylindrical region
r<a X €£x< X + 6X. In a short time inter-
val ¢, the heat received by the fluid from the
fibre passing through this region is, to first
order,

~2nak(0T)0y), .. (0 X dt, ©)

where y = r —a denotes distance from the
surface of the fibre and k is the thermal con-
ductivity of the fluid. The corresponding net
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loss of heat from the element by convection
across its two bounding cross-sections is

— Una? psCsd Tg/dx 6 X B, W)

where pg and Cg, respectively, denote the density
and specific heat of the fibre. Here we have
assumed that Ty does not vary over the fibre
cross-section : justification for this may be found
in Glicksman [5]. It may also be shown that,
under typical operating conditions, heat transfer
in the axial direction by conduction along the
fibre is very small compared with that due to
convection and may be neglected. It thus
follows from(6)and(7) that

KOT/3y),_o = $UapsCsdTy/dx,  (8)

and this is the final governing equation. We note
that equation (8) requires modification by the
inclusion of a heat source term if the material
of the fibre undergoes a phase transition in the
forming process. In the case of glass (with which
we are mainly concerned), the material is in the
liquid state throughout, but the behaviour of
some polymers is more complicated and partial
or total crystallisation may occur (Bawn [12]).

Because of the additional equation, another
boundary condition is now required, and this
is provided by assuming that the fibre tempera-
ture at the orifice (T;) is known, giving

TH0) = T, 9

Using the von Karman-Pohlhausen method,
an approximate solution of equations (1) and (2)
has already been given by Sakiadis [9] and has
been put into a convenient form by Bourne and
Elliston [1]. The velocity profile may be
expressed as

u 1 y
] e e = <6
i 1 pre log. <1 + a) for y (x) (10)

and

=0 for y=é(x) (11

u
U
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where

o(x) = a(e* — 1)
is the boundary layer thickness; the parameter
ofx) satisfies the implicit equation

2a

(12)

2vxx e

-1
T = — Ei(22) + log.(2)

+7-2  (13)

where y = 0:5772...is Euler’s constant.

In the next section we show that the tem-
perature T¢x) of the fibre may also be deter-
mined by the von Karman-Pohlhausen method.

3. ANALYSIS TO OBTAIN THE FIBRE

TEMPERATURE PROFILE
Define
B(x,y) = T(x.y) — T, (14)
and
Og(x) = Ty(x) — T,. (15)

We assume that the fluid temperature distribu-
tion may be expressed in the form

0 1 y
b_s_ 1 __B(_x)l ge<1 +E> for y < d4(x)
(16)
and
)
—=0 for y= dix), (17)
Os
where
drx) = a(e? — 1) (18)

is the thickness of the thermal boundary layer.
Justification for this choice of distribution,
which reduces to that assumed by Bourne and
Elliston [1] in the case when 0y is independent
of x, is given in the Appendix A.

To determine Ty(x) and the parameter f(x),
we use the energy integral equation, viz.

d o
a;J(a + Yubdy = — Ka<b;>‘,__0 ; (19)
) .
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this may be derived from the boundary layer
energy equation (3) by direct integration, use
being made also of the integral of the continuity
equation (1) to eliminate v.

At this stage it is convenient to restrict
attention to cases where the thermal boundary
layer contains the entire momentum boundary
layer, so that é < 4. This implies that the
Prandtl number ¢ < 1; however, the case when
o > 1 differs from this only in subsequent
details rather than in any fundamental way.

By substituting the velocity profile, (10) and
(11), and the temperature profile, (16) and (17),
into the integral equation (19), we obtain

%{%(%)[(ﬁ —a+ e —Qaf+a+f+ 1)]}
4xc0g(x)
= Tap (20)

The energy balance equation (8) may also be
expressed in terms of 84(x) and f(x) by substitut-
ing equations (14)-(16). Defining

psCs
which is the ratio of the specific heats per unit

volume of the fluid and the fibre, respectively,
we find that

n @n

dé 2kn
= " Ua 22)
Now, differentiation of (13) yields
dx 2 Ud®

and this may be used to eliminate the variable x
in equations (20) and (22) in favour of a. Per-
forming the differentiation in (20) and using
(22) to eliminate 85, we thus obtain after some
simplification

dg _ EF i+ (@ — B)(xe* — sinh oz)]

o cosh a — sinh
2ne”

+ _
oa?

[(1 + P)sinh o — o cosh o — afe™?]. (24)
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At x =0, 6 = 6; = 0, and hence by equations
(12) and (18), the end condition required for the
integration of (24)is

=0 when o=0. (25)

When B is known as a function of «, the
dependence of 85 on « can be determined by
integration of equations (22) and (23), which
gives

0(00)
18 5.40)

- - Z_JB%[(“ — e + o + 1]de.  (26)

0

Inverting this expression, and restoring the

original variables by means of equations (9).
(14) and (15), the temperature Tg(x) along the

fibre is given by
Ty(x) = T, + (T — T,)exp(—nljo), (27)

where

a(x)

I= J %[(cx —1)e* +a+ 1]da. (28)
4]

Values of x corresponding to particular values
of « may be calculated by means of equation
(13).

As a footnote to this section it is worth
mentioning that when S(x) and Ty(x) have been
calculated, the local rate of heat transfer, Q(x),
per unit length of cylinder may also be deduced
easily. It isreadily verified that

Q(x) = 2nk[ Tox) — T, )/B(x).  (29)

4. DISCUSSION OF RESULTS
We note first that a little care must be taken
in evaluating the integral I defined by equation
(28) because the integrand is of an indeterminate
form at the point @ = 0, § = 0. Furthermore,
the right-hand side of the differential equation
(24) is also singular at this point. Details of the
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computional method used are presented in the
Appendix B.

Before calculating the results, it was necessary
to assign suitable values to the Prandtl number
o, the kinematic viscosity v and the parameter
n [defined by equation (21)]. In the analysis
to obtain the temperature distribution, given
in the preceding section, these parameters were
regarded as constants, but each of them is, of
course, temperature dependent. It was hoped
that at this stage mean values could be chosen
in a consistent way which would lead to satis-
factory agreement with the experimental results
of Alderson et al. [10] and Arridge and Prior
[11]. Experience showed that the final results
were relatively insensitive to changes in ¢, and
as this parameter varies only slowly with tem-
perature it was taken to have the value corres-
ponding to the mid-point of whatever range of
fibre temperatures was under consideration. The
results were considerably influenced by varia-
tions in v and 5, and several ways of assigning
suitable mean values were tried. The most
successful procedure was the following.

Suppose that at the orifice the temperature of
the fibre is T, and that it is required to determine
the distance x, at which the temperature is T}.
The mean values of v and 5 with respect to
temperature over the range (T,, T,) were
calculated, using Tables of physical constants.
These mean values were then used to obtain
an estimate of x,. By repeating the procedure
for various values of T, a first approximation,
T (x), to the surface temperature distribution
T4(x) was obtained.

To obtain a better approximation. the dis-
tribution T§(x) was used to calculate values of
v and #n along the surface of the fibre, and this
enabled mean values of v and 5 with respect to
distance x to be found. These mean values were
then used to obtain a second approximation,
T (x), to Tg(x). This sequence of approximations
was continued, utilising at each stage the latest
approximation to Tg(x) to obtain approxima-
tions to the mean values with respect to x of
v and #, until no further noticeable change
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occurred. In practice, convergence was quite
rapid and, with the exception of one case when
a further iteration was required, it was found
unnecessary to go beyond the third approxima-
tion.

The motivation for the above procedure is
that the surface temperature distribution is
likely to be strongly influenced by the average
fluid properties near to the surface, since it is
in this region that most of the heat transfer
takes place. Average values with respect to
distance along the surface, are, of course,
likely to be more appropriate than average
values with respect to the temperature range
under consideration, and hence the latter were
used only to initiate the approximations to
T«(x). Ideally, some account should also be
taken of spatial variations across the boundary
layer, but investigation showed that very strong
weighting towards surface values was necessary
to bring the theoretical results close to the
experimental ones. In view of the fact that any
averaging procedure at this stage can be, at best,
only an approximation there seems little justifi-
cation for a more elaborate procedure than that
described. It must also be borne in mind that
there is an inherent error in the Pohlhausen
method, since the assumed velocity and tem-
perature profiles are not exact solutions of the
basic differential equations, and this may well
be at least as significant as that incurred in
the process of averaging,

It is worth mentioning that, as an alternative
to obtaining the mean values of v and # with
respect to x, the simpler procedure of using the
values corresponding to the temperature at the
point 3x, was also tried. However, although
this method sometimes led to satisfactory
agreement with experimental results, it was
found overall to be less reliable.

Alderson et al. [10] performed experiments
on glass fibres and found that, within a
quite substantial distance from the orifice,
log [ Ts(x) — T, ] decreases almost linearly with
x. Figures 2-4 show the straight lines which
they fitted to their data on three fibres of differ-
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ent radii drawn at different speeds. In each case,
the orifice temperature (T;) was about 1100°C
and measurements were made up to the point
at which the temperature had fallen to about
100°C. Using the method developed in this
paper, theoretical calculations were made to
determine the values of x corresponding to
fibre temperatures of 100, 200, 300, 400 and
500°C, respectively. The points obtained are
shown in the diagrams; Figs. 2 and 3 show only

70.
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the results of the final approximations to
Ty(x), but Fig. 4 shows the first, second and
third (final) approximation in order to give
some indication of the extent of the differences
between them in a typical case. It should be
noted that sufficient tabulated data of some of
the physical parameters involved could not be
found and graphical interpolation was used
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where necessary. Due to errors incurred in this
process, it was anticipated that some noticeable
inaccuracies might be introduced into the
calculations, and consequently the slight irregu-
larity of the theoretical points which is evident
in Figs. 2-4 was not unexpected. It is observed,
however, that the calculated values lie reason-
ably close to the experimental lines. The most
pronounced deviations occur in the second
case (Fig. 3), where temperatures in the inter-
mediate range of values of x are underestimated.

Arridge and Prior [11] also performed experi-
ments on the cooling of silica fibres. They
measured fibre temperatures over relatively
longer ranges of x than did Alderson et al. [10],
and obtained results in the region well beyond
the range of validity of the approximately linear
relationship between log [Ty(x) — T,,] and x.
In one case, they gave details of the measured
temperature distribution, from an orifice value
of 1750°C to a final value of about 55°C. Their
experimental curve is shown in Fig. 5, together
with some points predicted by the theory of this
paper. As found in comparing with one of the
experiments of Alderson et al. [10], there is a
marked tendency to underestimate temperatures
at intermediate values of x.

The discrepancies between the theoretical and
experimental values are probably due largely to
using average values of the fluid properties,
some of which vary by as much as a factor of
ten in the temperature ranges considered. As
mentioned earlier, there may also be a sig-
nificant contribution from the von Karman-
Pohlhausen approximation.

There are also obvious limitations to the
model near the orifice which should be borne
in mind. In the paper of Bourne and Elliston
[1], no account was taken of variation in the
fibre radius, which is quite marked near the
orifice, and the same approximation has been
adopted here. Furthermore, Griffin and Throne
[13] found in experiments on a flat sheet issuing
from a slot in a wall that the presence of the
wall leads to a reduction in the heat transfer
coefficient near the slot. A similar effect can be
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anticipated in the vicinity of the origin of a
drawn fibre. On the other hand, Glicksman
[14] has shown that near the orifice, radiation
significantly enhances the heat transfer process.
Using the appropriate formula in [14], it may
be shown that this effect is of about the same
order of magnitude as the reduction found by
Griffin and Throne [13]. The net contribution
to the error from these sources is thus probably
quite small, particularly as the region where
they are significant is only a small fraction of the
total length of fibre considered.
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APPENDIX A
The purpose of this Appendix is to explain why the
assumed temperature profile, defined by equations (16)-(18),
is likely to serve adequately in calculating the surface
temperature by the von Karman-Pohlhausen method.

Consider a profile of the form

ﬂ=1—-I—<y+py—2+q£> for y <é4x) (A1)
Os Bx)\a " @
and

0

i 0 for y = d4x). (A2)

N

where p, g are constants and f is a function of x only. This
satisfies the temperature boundary conditions (4) and (5).
For good accuracy in calculating surface properties. it is
also desirable that the chosen profile should adequately
represent conditions near the surface. This may be achieved
by choosing p and g so that, at y = 0, the thermal boundary
layer equation (3) and its derivative with respect to y are
satisfied.

Substituting (A.1) into the temperature equation (3) and
using the definitions (14) and (15), we find that for the
equation to be satisfied at y = 0.

dbg

9
v = 0 4 2

dx pa® (A3)

Eliminating 6 by means of equation (22), it thus follows that

p=n-% (A4)

However, in practice, 7 = 0(10 %) and hence to a very good
approximation we may takep = — 4.

Using the continuity equation (1) and the velocity
boundary conditions (4) and (5), the derivative at y = 0 of
the temperature equation (3) reduces to

T ?®T 10*°T 10T
ai‘ﬂ"‘*-u =K—3—*—Z‘*7—— (AS)
Qy O0x 0x0Y | ;=0 Jy ady a’ dy |,
Substituting the velocity profile (10) and the assumed

temperature profile (A.1),and using equation (22) to eliminate
8, we find that

1 1 /1 1 Ua?dp
g=z—=-+- |-
3 3\« B 6K dx

(A.6)
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Now, except within a distance of the order of 1 mm from
the orifice (x = 0), the terms in « and B on the right-hand
side of (A.6) are found to be very small indeed and hence
we may take ¢ = % with negligible error. Thus for y <d(x),
we now have

2 3
LI _L[X_ly_+ly_]
0 Bx)la 2a* 3a®
to a good approximation. This profile is the same as the
first four terms of the expansion in ascending powers of y
of the logarithmic expression (16), and it follows that (16)
is likely to have a good accuracy near the surface of the
fibre(y = 0).

Finally, it should be noted that an important additional
feature of the logarithmic form, which makes it preferable to
a simple polynominal expression, is that it asymptotically
correct when x — oo. For, in the limit when x — oo, the
convection terms on the left-hand side of equation (3) vanish,
and it is readily verified that the profile (16) satisfies the
reduced equation identically.

(A7)

APPENDIX B
At the pointa = 0, f = 0, the right-hand side of equation
(24) is of an indeterminate form. To obtain £ in this neigh-

bourhood an expansion of the form
B=a0+ a0% + a0+ ... (B.1)

may be used. Substituting this into the differential equation
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(24) and comparing coefficients of «, x> and a? in the expan-
sion of each side, we find that

a; = $(o + 2)/o, (B.2)
a; = [(6 = V(g + 2) + 61)/96(c + 1), (B.3)
a; = [(o — (o + 2)(30% — 46 — 2) + 60362 + ¢ + 2

+ 360n2]270(c + 1)!(Go + 2).  (BA)

To evaluate the integral I defined by equation (28), the
series expansion (B.1) was substituted first, which on
expanding in ascending powers of « gives

2 3 3
= fis (1B s ——2—9+@>a2. (BS)
30, a, 5 a; a4 a%

This expression was used to evaluate [ in the range
0 < o € 0:08; outside this range, values of the integral were
calculated by means of the trapezoidal rule.

The series expansion (B.1) was used to evaluate § in the
range 0 < a < 008. Using the Hamming method, forward
integration of the differential equation (24) was then carried
out, in steps of 002, to determine f up to the point where
o« =75 (which is likely to be quite sufficient for most
practical purposes).

Finally, values of x corresponding to particular values of
a were found from equation (13), and hence the temperature
distribution Ti(x) was obtained.

The whole procedure was programmed and carried out by
an 1.C.T. 1907 computer.

LE REFROIDISSEMENT DE FIBRES DANS LE PROCESSUS DE FORMATION

Résumé—Dans les industries du verre et des polymeéres, des fibres sont fabriquées par extrusion du matériau
chaud dans un orifice circulaire pour former un filament continu. Cet article concerne la détermination de
la température de la fibre comme étant une fonction de la distance a [’orifice. On examine un simple exemple
dans lequel la fibre est prise pour un cylindre continu circulaire infini sortant dans un fluide d’étendue
infinie. Les équations de la couche limite en relation avec une équation contrélant le taux de cession de
chaleur de la fibre au fluide sont résolues par la méthode de Kdrman—Pohlhausen.

Une difficulté importance dans ce probléme est que les propriétés du fluide varient bien au-dela des
hypothéses ceci a cause des grands gradients de température qui existent dans la pratique. Pour tirer compte
de ceci une méthode de moyenne est développée qui conduit 2 un accord favorable avec les résultats

expérimentaux.

DIE ABKUHLUNG VON FASERN BEIM HERSTELLUNGSPROZESS

Zusammenfassung—In der Glas- und Kunststoffindustriec werden Fasern durch Herauspressen heissen
Materials aus kreisférmigen Diisen erzeugt in Form eines endlosen Fadens. Hier soll die Fadentemperatur
als Funktion vom Abstand von der Diise bestimmt werden.

Im Modell wird der Faden als endloser Kreiszylinder angesehen, der kontinuierlich in ein unendlich
grosses Bad taucht. Nach der KArman-Pohlhausen-Methode sind die Grenzschichtgleichungen zusammen
mit einer Gleichung fiir den Warmetransport vom Faden an die Fliissigkeit gelost.

Eine beachtenswerte Schwierigkeit liegt hier darin, dass sich die Flissigkeitseigenschaften im inter-
essierenden Bereich stark dndern, wegen der praktisch vorkommenden grossen Temperaturgradienten.
Um diese Schwierigkeit zu umgehen, wird eine Methode zur Mittelwertbildung vorgeschlagen, die ziemlich

gute Ubereinstimmung mit Versuchswerten liefert.
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OXJAMJAEHME BOJIOKHA B TEXHOJOI'MYECKOM MNPOLECCE

AnHoTAIMA—DB NPOMSBOICTBEHHBIX yCN0BUAX HEIPEPHIBHBIE BOJOKHA CTEKJA N TNOJMMEPOB
NOJyYaloT IyTeM INpPOJABINBAHUA HATPETOr( MAaTepHajla vepe3 KPYyrJsle oTBepcTHA. B
AaHHON palore npuBeddH pacuyéT TeMIepaTypul BOJOKHA Kak (YHKIMU pPACCTOAHUA OT
orBepcTud. [IpuHATa mpoctas pacyéTHas MOROIb, 0 KOTOPOH BOJOKHO PAcCMATPHBAETCH
KaK CHOJOWIHOM HenpepuBHB GecHOHEUHBI KPYrabiil LUIMHAD, HOTpYykaomuica B Gearpa-
HMYHYJ0 HMJIKOCTh. YDaBHEHHH IIOFPAHNMYHOrO cjos pemawTcs Merogom Hapmana-
ITosbray3eHa COBMECTHO ¢ ypaBHEHNEM TeI0BOro 6ajlaHCca, ONpeAesANNM HHTEHCHBHOCTD
TENJNOOTAAYM OT BOJOKHA B ;uUAKOCTh. Haubonelnasg TpyAHOCTb B peleHHH 3TON sagadn
COCTOMT B HeoOXOIUMOCTH yuéTa CHIbHON IePeMEHHOCTH CBOUCTB MUAKOCTH BO BCell nccuen-
yemolt oGaacru noj Bo3jelicTBueM (OJIbIIMX TeMIEPATYPHBIX IPafHeHTOB, UMEWIMX MECTo
B peaJbHOM mporecce. B pabore mnpemiaraercA MeToX OCpelHeHUA, o0ecNeYNBAIOIMIA
AOBOJIBHO XOpOIllee COrjacoBaHne pacyéTa ¢ SKCIepUMMEHTATbHBIMU pe3yJIbTaTaMu.



